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Abstract. The choice network revenue management model incorporates customer purchase
behavior as probability of purchase as a function of the offered products and is appropriate for
airline and hotel network revenue management, dynamic sales of bundles, and dynamic
assortment optimization. The optimization problem is a stochastic dynamic program and is
intractable. Consequently, a linear programming approximation called choice deterministic
linear program (CDLP) is usually used to generate controls. Tighter approximations, such as
affine and piecewise-linear relaxations, have been proposed, but it was not known if they can be
solved efficiently even for simple models, such as the multinomial logit (MNL) model with
a single segment. We first show that the affine relaxation (and, hence, the piecewise-linear
relaxation) is NP-hard even for a single-segment MNL choice model. By analyzing the affine
relaxation, we derive a new linear programming approximation that admits a compact rep-
resentation, implying tractability, and prove that its value falls between the CDLP value and the
affine relaxation value. This is the first tractable relaxation for the choice network revenue
management problem that is provably tighter than CDLP. This approximation, in turn, leads to
new policies that, in our numerical experiments, show very good promise: a 2% increase in
revenue on average over CDLP and the values typically coming very close to the affine re-
laxation. We extend our analysis to obtain other tractable approximations that yield even tighter
bounds. We also give extensions to the case with multiple customer segments with overlapping
consideration sets in which choice by each segment is according to the MNL model.
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1. Introduction and Literature Review
Revenue management controls the sale of different
products that share a resource to maximize revenue, and
in network revenue management (NRM), the prod-
ucts, in addition, consume multiple resources creating
network dependencies. In this paper, we consider NRM
under a choice model of consumer behavior. In the
canonical airline example, resources correspond to flight
legs and products correspond to itineraries that span
multiple flight legs; in the car rental application, re-
sources are automobiles of a category and a product is
the consecutive days of the rental; for the hotel industry,
resources correspond to hotel rooms for each night and
products correspond to multinight stays. The network
dependencies introduce a considerable amount of ad-
ditional complexity to the stochastic control problem.
The NRM problem can be formulated as a stochastic
dynamic program (DP). However, solving the Bellman
equationpispintractablepevensforpveryssmall problems
because of an explosion of the state space. Considering
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the intractability of the NRM dynamic program, Gallego
et al. (2004) and Liu and van Ryzin (2008) proposed
a linear programming (LP) approximation called the
choice deterministic linear program (CDLP, similar to
some earlier deterministic approximations proposed for
solving NRM under the simpler perfect segmentation
assumption; see Talluri and van Ryzin 2004). The opti-
mal objective function value of CDLP gives an upper bound
on the value function of the NRM dynamic program.
Upper bounds are useful for both deriving controls from
them as well as assessing the suboptimality of policies.

The CDLP, however, has a drawback. The number of
columns are exponential in the number of products, so it
has to be solved using column generation. Liu and van
Ryzin (2008) show that the CDLP column-generation
procedure is tractable for the multinomial logit (MINL)
choice model with multiple customer segments when
the customers’ consideration sets do not overlap. More
recently, Gallego, Ratliff, and Shebalov (2015) show that
CDLP has a compact linear programming formulation
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under the MNL model with disjoint consideration sets.
On the other hand, for the problem with two segments
whose consideration sets overlap, CDLP is intractable
even for the MNL model (Bront, Méndez-Diaz, and
Vulcano 2009; Rusmevichientong et al. 2014). Zhang
and Adelman (2009) investigate an affine relaxation
(AF) to the NRM dynamic program and show that it
obtains a tighter upper bound than CDLP. The hardness
result for the MNL choice model with multiple customer
segments and overlapping consideration sets carries
over to the affine relaxation as well. Because of the
negative computational complexity results for obtaining
bounds on the value function, some researchers have
studied methods to obtain control policies, such as bid-
price controls directly; see, for example, Chaneton and
Vulcano (2011); Meissner and Strauss (2012); and
Hosseinalifam, Marcotte, and Savard (2016).

There are two important dimensions to assess the dif-
ferent approximation methods. One is the quality of the
upper bound, and the other is computational tractability.
On the quality dimension, the approaches proposed by
Zhang and Adelman (2009) and Meissner and Strauss
(2012) are provably tighter than CDLP. However, in this
paper, we show that the AF of Zhang and Adelman (2009)
turns out to be intractable even for the MNL model with
a single segment.

On the other hand, the approximation methods pro-
posed by Talluri (2014) and Meissner, Strauss, and
Talluri (2013) are tractable provided the consideration
sets are small in size (polynomial in the size of the
consideration sets). However, they are not guaranteed
to produce upper bounds that are provably tighter than
the CDLP bound. This motivates the need for tractable
solution methods that tighten the CDLP bound.

Kunnumkal and Talluri (2016) establish analytic limits
on how much the AF bound can improve upon the CDLP
bound and show that real improvements are possible
only under low resource availabilities, which is likely to
happen closer to the end of the sales horizon. Because the
upper bound obtained by our approximation methods
fall in between the CDLP and AF bounds, the result of
Kunnumkal and Talluri (2016) applies to our formula-
tions also with the distinction that our approximation
methods are tractable and AF is not.

This paper builds on these advances and makes the
following research contributions:

1. We show that the affine relaxation of NRM is NP-
hard even for the single-segment MNL model (perhaps
the simplest of choice models). Our result implies that
stronger solution methods that obtain tighter bounds
than the affine relaxation (such as the piecewise-linear
approximation proposed by Meissner and Strauss 2012)
are also NP-hard for the single-segment MNL model. On
the other hand, our hardness result motivates solution
methods that tighten the CDLP bound and remain
tractable, at least for the single-segment MNL model.

2. We propose a new, compact, linear programming
approximation that gives a tighter bound on the dy-
namic program value function than CDLP, improving
upon the work of Gallego, Ratliff, and Shebalov (2015).
Compact formulations are attractive from an imple-
mentation perspective for a number of reasons: they do
not require customized coding for constraint separa-
tion or column generation, and they reduce the sub-
jectivity involved in setting the stopping criterion for
the constraint or column-generation process. To our
knowledge, this is the first tractable approximation
method for MNL that is also provably tighter than
CDLP. In numerical experiments, our approximation
typically produces upper bounds that are close to the
affine bound (achieving nearly 75% reduction of the
gap between it and the CDLP) and have good revenue
performance (obtaining, on average, above 95% of the
revenues obtained by the affine relaxation). Running
times for our new approximation are typically a frac-
tion of that of the affine relaxation (in its faster reduced
form (12) described in Section 2.5).

3. We show how our ideas can be extended to
the mixture-of-multinomial-logits (MMNL) model
(McFadden and Train 2000) with both disjoint as well
as overlapping consideration set assumptions.

4. We propose control policies based on the new
approximation and test its performance through an
extensive numerical study. Our method yields no-
ticeable benefits in terms of both tighter bounds (more
than 1.5% above CDLP on average across instances)
and improved revenue performance (more than 2%
above CDLP on average across instances). The benefits
primarily come from sharper value function approxi-
mations toward the end of the selling horizon when
capacity tends to be relatively scarce. So one option for
practitioners is to switch to our method during the last
few days of the sales horizon.

The remainder of the paper is organized as follows:
In Section 2, we describe the choice NRM model, the
notation, the basic dynamic program, the CDLP, and
the affine relaxation of the NRM dynamic program.
Next, in Section 3, we show that the affine relaxation is
NP-hard even for the single-segment MNL model. We
describe our first tractable approximation method in
Section 4. Section 5 discusses extensions to the MMNL
model. Section 6 contains our computational study
using the new approximation.

2. Problem Formulation

We are interested in controlling the sale of products
over a finite sales horizon. A product is a specification
of a price and the set of resources that it consumes.
Time is discrete, and the sales horizon consists of T
intervals, indexed by t. The sales horizon begins at time
t=1 and ends at t =17; all the resources perish in-
stantaneously at time 7+ 1. We make the standard
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assumption that the time intervals are fine enough so
that the probability of more than one customer arriving
in any single time period is negligible.

We let $ denote the set of resources and $ the set of
products. We index resources by i and products by j.
We let f; denote the revenue associated with product j
and use $; C  to denote the set of resources used by
product j. We let 1|,; denote the indicator function, one
if true and zero if false, and Ty, denote the vector of
resources used by product j with a one in the ith
positionif i € $; and a zero otherwise. We use §; C § to
denote the set of products that use resource i.

In each period, the firm offers a subset S of its
products for sale, called the offer set. We write i € $g
whenever there is a j € S with i € §;; that is, there is
at least one product in the offer set S that uses re-
source 1.

We use superscripts on vectors to index the vectors
(for example, the resource capacity vector associated
with time period t would be ') and subscripts to in-
dicate components (for example, the capacity on re-
source i in time period t would be 7!). Therefore, r* = [r}]
represents the initial capacity on the resources, and ' =
[r!] denotes the remaining capacity on the resources at
the beginning of time period t. The remaining capacity 7!
takes values in the set ®; = {0,...,7!}, and ® = [T
represents the state space at each time ¢.

2.1. Demand Model

We have multiple customer segments, each with distinct
purchase behavior. The segmentation of the customers
could be according to different criteria—for example,
price sensitivities, demographics, or even geographic
locations. We let & denote the set of customer segments.
In each period, a customer from segment [ € £ arrives
with probability A; so that A = 3, A; is the total arrival
rate. Note that, conditioned on a customer arrival, A;/A
is the probability that the customer belongs to seg-
ment [.

Customer segment [ has a consideration set ¢, C $
of products that it considers for purchase. We assume
this consideration set is known to the firm (by a pre-
vious process of estimation and analysis). The choice
probabilities of a segment-/ customer are not affected
by products not in its consideration set. Given an offer
set S, an arriving customer in segment [ purchases a
product j in the set S; = 6; N S or leaves without making
a purchase. The no-purchase option is indexed by zero
and is always present for the customer.

Within each segment, choice is according to the MNL
model. The MNL model associates a preference weight
with each alternative, including the no-purchase alter-
native. We let w! denote the preference weight associated
with a segment-/ customer for product.j. Without loss of
generality, by suitably normalizing the weights, we set
the no-purchase weight @}, to be one. The probability that

a segment-/ customer purchases product j when S is the
offer set is

1
w;jjes;)
1+ Sies, W}

The probability that the customer does not purchase
anything is P)(S) = 1/(1 + es, w.). We note that the
preference weights are inputs to our model; estimating
them is outside the scope of the paper. We refer the
reader to Ben-Akiva and Lerman (1985) for further
background on this popular choice model.

Given a customer arrival and an offer set S, the prob-
ability that the firm sells j€ S is given by P;(S) =
> %P}(S) and makes no sale with probability Py(S) =
1 - Xjes Pj(S). The expected sales for product j is,
therefore, AP;(S) = 3, /\IP}(S), and 1 - A+ APy(S)=1-
Yjes AP;(S) is the probability of no sales in a time period.
Given an offer set S, Qi(S) = Zjeq, Pi(S) denotes the
expected capacity consumed on resource i conditional
on a segment-/ customer arrival, and Q;(S) = X, % Qk(s)
denotes the expected capacity consumed on resource i
conditional on a customer arrival. Note that AQ;(S) =
1 AQK(S) gives the expected capacity consumed on
resource i in a time period. The revenue functions can be
written as R'(S) = jes fiPi(S) and R(S) = Sjes fiP(S)-

We assume that the arrival rates and choice proba-
bilities are stationary. This is for brevity of notation
only; all our results go through with nonstationary
arrival rates and choice probabilities.

Pi(5) = M

2.2. Choice Dynamic Program

The DP to determine optimal controls is as follows. Let
Vi(r') denote the maximum expected revenue to go
given remaining capacity ' at the beginning of period .
Then V(r') must satisfy the Bellman equation

Vi) = s T 61 Vil )

+[APy(S) + 1 = A]Viny (rt)}, @)

where
S(r) = {]| lieg) <1 Vi}

represents the set of products that can be offered given
the capacity vector r. The boundary conditions are
Ves1(r) = Vi(0) = 0 for all r and for all £, where 0 is a
vector of all zeroes. We let VPP = V(r!) denote the
optimal expected revenue over the sales horizon
given the initial capacity vector rl.

2.3. Linear Programming Formulation of the
Dynamic Program

The value functions can, alternatively, be obtained by

solving an LP. The LP formulation of (2) has a decision
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variable for each state vector in each period V(r) and is
as follows:
VDPLP - m‘}n ‘/1 (1"1)
(DPLP) s.t. Vi(r) = > /\Pj(S)[ fi+ Vi (r - nmj)
j

= Vi ()] + Vi ()
VreR,SCI ()t

®)
Both dynamic program (2) and DPLP are computa-
tionally intractable, but DPLP turns out to be useful in
developing value function approximation methods as
shown in Zhang and Adelman (2009). In the follow-
ing, we describe two approximation methods, namely
the choice deterministic linear program and the af-
fine relaxation. Carefully analyzing the differences be-
tween the two formulations leads to our new tractable
approximation.

2.4. Choice Deterministic LP

The (CDLP) proposed in Gallego et al. (2004) and Liu
and van Ryzin (2008) is a certainty-equivalence ap-
proximation to (2). We write CDLP as the following LP:

CDLP _
1% = max Zt: Zs] AR(S)hs ;

t
(CDLP) s.t. > > AQS)hsi <1} Vit (4)
k=1 S
Zhsrt = 1 Vt (5)
S
hsy >0 VS, ¢t

The decision variable hg; can be interpreted as the
frequency with which set S (including the empty set) is
offered at time period t. The first set of constraints
ensures that the total expected capacity consumed on
resource i up until time period t does not exceed the
available capacity. Note that, because hg; > 0, con-
straints (4) are redundant except for the last time pe-
riod. Still, this expanded formulation is useful when we
compare CDLP with other approximation methods.
The second set of constraints states that the sum of the
frequencies adds up to one.

The dual of CDLP turns out to be useful in our anal-
ysis. Associating dual variables y = {y;|Vi, t} with con-
straints (4) and B = {B;|Vt} with constraints (5), the dual
of CDLP is

VIO = min 3+ 3 S ]
77 t t i

(dCDLP)s.t. Bi+ > (Z m) AQiS) = AR(S) V4,S

i\ k=t
yir =0 Vit
(6)

Liu and van Ryzin (2008) show that the optimal ob-
jective function value of CDLP, VPP is an upper bound
on VDPLP

Besides giving an upper bound on the value function,
CDLP can also be used to construct different heuristic
control policies. We describe one heuristic control pro-
posed by Zhang and Adelman (2009): Letting ¥ = {7;:|
Vi, t} denote the optimal values of the dual variables
associated with constraints (4), we interpret ;; as giving
the value of an additional unit of capacity on resource i
from time period t to t+1. With this interpretation,
ezt Vis gives the marginal value of capacity on resource
i at time period t. Zhang and Adelman (2009) approx-
imate the value function V,(r!) as

Vi) = Z (i 771-,5) P 7)

The heuristic control replaces the value function by its
approximation in optimality Equation (2) to determine
the offer set. That is, if # is the vector of remaining
resource capacities at time £, the heuristic control solves
the problem

mU{Z AP fi+ Vi (7 = o) |
- ]

®)
+[APy(S) +1 — A]f/m(rf)},

and offers the set that achieves the maximum in this
optimization problem.

The number of decision variables in CDLP is expo-
nential in the number of products, and so it has to be
solved using column generation. The tractability of
column generation depends on the underlying choice
model. Liu and van Ryzin (2008) show that the column-
generation procedure can be efficiently carried out
when choice is according to the MNL model and the
consideration sets of the different segments do not
overlap. That is, we have €; N6, = 0 for segments !
and m. Under the same set of assumptions, Gallego,
Ratliff, and Shebalov (2015) further show that CDLP
has the following equivalent, compact formulation

V/SBLP _ mxax Z Z Z /\lﬁx;',t
t

1 jE<€1
(SBLP)s.t. >3 > Awj, <7 Vit
ol jegine
! !
Xop+ ij,t =1 VIt )
]'Eceol

x},t 1 .
—T=x;, <0 VIje€,t
@i

xf),t,xé,t >0 VIjt

In this sales-based linear program (SBLP), the decision

variables x},t can be interpreted as the sales rate for
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product j at time ¢. Note that SBLP is a compact for-
mulation because the number of constraints and de-
cision variables is polynomial in the number of products
and resources. On the other hand, if the consideration
sets overlap, Bront, Méndez-Diaz, and Vulcano (2009)
and Rusmevichientong et al. (2014) show that the CDLP
column generation is NP-hard even under the MNL
choice model.

2.5. Affine Relaxation

The second approximation method we consider is the
affine relaxation, with which the value function is
approximated as V(r) = 0y + 3; V; ;. Note that V;; can
be interpreted as the marginal value of capacity on
resource i at time t. Substituting this value function
approximation into the formulation DPLP, we get the
affine relaxation LP

AF _ : 1
Vet = Igll{}l 01+ Z Vj/ﬂ’i
4 i

(AF)s.t. 9t+ZVltr, >ZAP(S)

Z VI t+1

i€y;
+ 01 + Z Vi,t+1ri Vre %,S c 9’(1’),1’
i

6,>0,Vyy >0 Vit

with the boundary conditions 8,41 = 0, V41 = 0. Zhang
and Adelman (2009) show that the optimal objective
function value VAF is an upper bound on the value
function and that there exists an optimal solution ©6,7V)
of AF that satisfies V,t - V, 111 =0 for all i and ¢.

Although the number of decision variables in AF is
manageable, the number of constraints is exponential
in both the number of products as well as the number
of resources. Vossen and Zhang (2015) use Dantzig—
Wolfe decomposition to derive a reduced, equivalent
formulation of AF, in which the number of constraints
is exponential only in the number of products.

We give an alternative, simpler proof of the reduction
here. The analysis we present also turns out to be useful
in the development of our tractable solution methods
later. We make a change of variables ; = 0; — 04,1 and
Vit = Viy = Vir and write AF equivalently as

min Z‘Bt+zz%tr

By

st P+ Z Viiti + Z AP/(S)

Vre®R,SC Ef’(r),t
Vit =20 Vit

i)

i€$; k=t+1

(10)

where we use the fact that Vi; = Xf_, vix, and so X[, ik
can be interpreted as the marginal value of capacity on

resource i at time . Note that the nonnegativity constraint

on y;; is without loss of generality because there exists

an optimal solution to AF that satisfies V;; — V.1 > 0.
Now, constraints (10) can be written as

{ﬁt+2y,m+Z)\P (5) (gk%%k) l}

>0
1)

reR, SCJ(r)

for all t. Because y;; > 0, the coefficient of r; in mini-
mization problem (11) is nonnegative, and we can
assume 7; € {0,1} in the minimization (as larger values
of r; would be redundant in S € ¥(r) and would only
increase the objective value). Moreover, because y;; > 0
for any set S, we have r; =0 for i ¢ $5. On the other
hand, feasibility requires we have r; =1 for i€ $s.

Therefore, (11) can be written as
msin{ﬁt + Z Tiess1Vit + Z AP(S) (Z Z Vi,k) _ﬁl}
i j i€y k=t+1

>0.

And we can write AF equivalently as

RAF = min Z Be + Z Z )/i/ﬂ’}
By f rod
B+ > Tiessip + 2
i

i

(RAF) s.t.

(i m) AQi(S)l

k=t+1
> AR(S) Vt,S
Vit =20 Vit
(12)
Notice that the number of constraints in the reduced
formulation RAF is an order of magnitude smaller than

AF. Taking the dual of RAF by associating dual vari-
ables hg; with constraints (12), we get

ARAF _
Vv = max Zt: Zs: AR(S)hs t

t=1

(dRAF)s.t. Z Z /\Q,’(S)]’ls,k + ﬂ[ieﬁs]hs,t < 7’1-1 Vi, t

S \k=1
Zhs/t =1 \7’t
S
hsy>0 VS,t.

These arguments imply the following:

Proposition 1. (Vossen and Zhang 2015). VAF =
VARAF

VRAF

We close this section with two remarks. First, in ad-
dition to giving an upper bound on the optimal expected
total revenue, the affine relaxation can also be used to
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construct heuristic control policies. Letting (8, 7) with § =
{B:|Vt} and 7 = {J;;| Vi, t}, denote an optimal solution to
RAF, we use Y;_, 7ix to approximate the marginal value
of capacity on resource i at time t. We approximate V(')
using (7) and solve problem (8) using this value function
approximation to decide on the set of products to be
offered at time period t. Second, Zhang and Adelman
(2009) show that the upper bound obtained by AF is
tighter than CDLP. In that sense, AF is a better ap-
proximation than CDLP. At the same time, it is important
to understand the computational effort required by AF to
obtain a tighter bound. We explore this question in the
following section.

3. Tractability of the Affine Relaxation for
MNL with a Single Segment

In this section, we focus on the tractability of the affine
relaxation for the single-segment MNL model. We re-
strict our attention to the single-segment MNL because it
is one of the few cases in which CDLP is tractable. We
show that the affine relaxation is NP-hard even for this
simple choice model.

Let the preference weights be w; (as mentioned earlier,
we drop the segment index / when we are analyzing a
single-segment problem). The choice probabilities, ex-
pected resource consumptions, and expected revenues
are then given by

Tjjes)w; 2ieg,ns W
PAS) = J (S) = J€Fi ]
i5) 1+ Ykes wi Q(S) 1+ Yjesw 13)
_ Zjes i
R(S) = 2SI
1+ Z]’ES wj

Because RAF has an exponential number of constraints,
we have to use constraint separation and generate
constraints (12) violated by a solution on the fly. Fol-
lowing the result of Grotschel, Lovasz, and Schrijver
(1988), polynomial solvability of an LP is equivalent to
polynomial-time generation of violated constraints, and
so we focus on separating constraints (12).

Substituting (13) into constraint (12), we obtain

o Zjegins Wj Zjes fiwj
(Z ‘)/i,k)/\ - 1+Z L
k=t+1 jes Wi

Bt + sy + Z

i

1+ Zjes wj

where
Vst = Z Tliegs]Vit-
Multiplying both sides by the positive quantity 1+

Yjes w; and simplifying, constraint (12) of RAF can be
equivalently written as

Bt = —ysi (1 + > wj) = > GiB.7), (14)

j€s j€S

where

(B, y) = w;

g

i€9; k=t+1

Because the constraint has to be satisfied for every S
and t, we have p; > ITAT(B,y) for all t, where

B, y) = mgX{—ys,f (1 +>) w,-) = > GHB, 7/)}

j€s jes
(16)

and the affine relaxation constraint (12) can be equiv-
alently written as

B > TIM(B,y) Vvt (17)

Generating constraints on the fly involves checking,
given a set of values (B,y), if constraint (14) is satisfied
for all S. If not, we add the violated constraint to the LP.
In other words, the RAF separation problem at time ¢
involves solving optimization problem (16) and de-
termining if B; > TIAF(B,y). If B; > TT¥(B,7), then con-
straint (14) is satisfied for all S at time t. Otherwise, the
set § that attains the maximum in problem (16) violates
the constraint, and we add the constraint for set S to
the LP.

Proposition 2 states that the affine relaxation sepa-
ration problem for MNL with a single segment, as given
in (14), is NP-hard.

Proposition 2. The following problem is NP-complete:
Input: w; 20,12 A >0, f; 20, and values p; and y;; > 0.
Question: Is there a set S that violates (14)?

Proof. Our reduction is from the NP-complete maxi-
mum edge biclique problem (Peeters 2003). We state
first the definitions and notation in the problem.

The problem is defined on an undirected, bipartite
graph G= (Vl U Vz, E) with |V2| = my. A (kl,kz) biclique
is a complete bipartite subgraph of G, that is, a sub-
graph consisting of a pair (X, Y) of vertex subsets X C
Viand Y C V,, |X| =k >1,|Y| = kp > 1, such that there
exists an edge (x,y) € E, Vx € X,y € Y. Note that the
number of edges in the biclique is kik,.

3.1. Maximum Edge Biclique Problem
Input: A bipartite graph G = (V3 U V5, E) and a positive
integer p.

Question: Does G contain a biclique with at least
p edges?

Consider the complement bipartite graph G of G
defined on the same vertex set as G, where there is an
edge e = (1,0) in graph G if and only if there is no edge
between u and v in G.
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Define a cover Cs CV, of a subset S C V; in the
complement graph G as Cs={ve V,|Te=(u,0)¢€
G, u € S}. By definition, if Cs is a cover of some subset S,
itmeans there is no edge fromany u € Stoany v € V,\Cs
in the graph G. Hence, as G is a complement of G, there is
an edge from every u € S to every v € V\C(S) in G, thus
representing a biclique between S and V\C(S) in the
graph G.

Now we set up the reduction for the separation
for (14). In Equation (14), for each u € V1, we associate a

product j with f; = m» (ﬂ%l) and w; = my. For each v € V3,

we associate a resource i with weights y;; = L and y;; =
0, k> t. The resource consumptions of the products j are
defined from the graph G: j contains all the i such that
there is an edge between the associated nodes in G. We
let A =1,8; = my.

We now claim that G has a (ki, k) biclique with
kik, > p if and only if there is a set S that violates the
inequality (14) for this instance.

With these values, S C V; with |S| = ky, |C(S)| = mp — ko
violates (14) if and only if

ZjES (p;%l) (m2)2 1
my ——————— - —
(]- + ZjGS mZ) iec(s)p

or
iy — (p+Dmoks - (m2 — ko)
p(ﬂ%z + kl) p

or, multiplying both sides by the positive number
PG+ k),

1 1
mzp(m—2 + kl) — (p + 1)17’12](1 < — (Tﬂz — kz) (Wl—z + kl)
or

p< —M+kzk1.
ny

The term 0 < % <1 implies, if and only if
p< kok;. O

Therefore, even though the affine relaxation tightens
the CDLP bound, it comes at a significant cost. This
motivates the solution method that we propose in the
following section, which tightens the CDLP bound
while retaining tractability.

4. Weak Affine Relaxation

In this section, we propose our tractable approximation
method. that tightens the CDLP bound. We also show
that our approximation method can, in fact, be formulated

as a compact LP. In our initial development, we restrict
attention to the single-segment MNL choice model.
Although this is primarily for clarity of exposition, we
note that the single-segment results may be of in-
dependent interest, especially in the context of optimi-
zation of personalized assortments; see for example
Golrezaei, Nazerzadeh, and Rusmevichientong (2014)
and Gallego et al. (2016). In Section 5, we show how the
ideas can be readily extended to the MNL model with
multiple customer segments.

4.1. Preliminaries

All of our approximation methods involve solving an op-
timization problem of the form ming, 3, ; + 3 ;i yi,tr}
subject to the constraints f; > IT;(,y), where IT;(;,-) is
a scalar function of g = {B;|Vt} and y = {y;;|Vi, t}. The
following observation is useful in comparing the up-
per bounds obtained by the different approximation
methods.

Lemma 1. Let
V= ng%n Zt] B + Ztl le Visls
() st Br>TLBY), 7ie=0 Vit
and
=g S S
(I s.t. pr = TI(B,y),
IF TN, y) < THL(B,y) for all t, then VI < VI

Yie 20 Vit

Proof. The proof follows by noting that a feasible so-
lution to problem (II) is also feasible to problem (I), and
both optimization problems have the same objective
function. O

4.2. CDLP vs. AF for Single-Segment MNL
We begin by comparing the CDLP and AF separation
problems for the single-segment MNL model. For this
choice model, the CDLP constraints can be separated
efficiently, and the AF separation problem is intracta-
ble. Comparing the CDLP and AF separation problems
helps us identify the difficult term in the affine relax-
ation. Replacing this difficult term in the AF separation
problem with a more tractable term yields our ap-
proximation method.

Using the single-segment MNL formulas for the ex-
pected resource consumptions and expected revenues,
the CDLP dual constraint (6) can be written as

Vt,S,

Br=- 2w

jes

B+ A ( (Z > m) _ff)

i€d; k=t
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which looks similar to the right-hand side of (14) except
that the inner summation over k runs from f instead of
t + 1. To make the comparison with AF easier, we re-
write the constraint as

B > HfCDLP(ﬁ, y) Vi, (18)
where
HtCDLP(ﬁ, 7/) — msax{—/\ Z wj (Z )/i,t) - Z Cj,t(ﬁr 7/)}/
7es ic9; jes
(19)

and C;4(B,y) is defined in (15). Because 0 < A <1, and
Vst = i liesVit 2 Zies, Vie 2 0 for all j € S, we have

Vs, (1 + > wj) > A w (Z yi,t) }
j€s j€s icy;
Therefore, TTIAF(B,y) < TIEPLP(B,y), and by Lemma 1,
VAE < VEPLP “which gives an alternative proof of the
AF bound being tighter than the CDLP bound. More
importantly, the comparison hints at how we can ob-
tain tractable relaxations that are tighter than CDLP.

4.3. A New Tractable Approximation

We are now ready to describe our tractable approxima-
tion method, which we refer to as weak affine relaxation
(wAR). The difficult term in (16) is the y’5 ;(1+ Xjes w;), and
CDLP is tractable as it replaces this by A 35 wj(Zie 3, Vit)-
We instead replace the ys:(1 + Xjesw;) term in (16)
with Vs + Yjes w]-(Z,Egj yit) and solve the LP

VAR = n/;uyn SIBA+ D D v
/ 7 T

(WAR) s.t. B > TTI4R(B,9) Vi
Vit >0 Vi, t,

(20)

where

TTvAR = mgX{—VS,t - 2w (Z Vz',t) - 2268, V)}'

j€S i€$; j€s
@1)

Proposition 3 shows that wAR obtains an upper bound
on the value function that is weaker than AF but stronger
than CDLP.

Proposition 3. VAF < VwAR < 7CDLP

Proof. The proof follows by noting that

po1+ Bo) 27500 [ S 21 S S

j€S j€s icy; jes icy;

Therefore, TTF(B,7) < TI4R(B,y) < TIEPLP(B,y), and
the result now follows from Lemma 1. O

In the remainder of this section, we show that the
weak affine relaxation upper bound, V*4R, can be ob-
tained in a tractable manner; moreover, we show that
the weak affine relaxation LP can, in fact, be reformu-
lated as a compact LP in which the number of variables
and constraints is polynomial in the number of products
and resources.

Observe that solving problem (21) in an efficient
manner is key to separating the weak affine relaxation
constraints efficiently. Therefore, we focus on solving
optimization problem (21). Introducing decision vari-
ables q;; and u;;, respectively, to indicate if resource i
and product j are open at time ¢, problem (21) can be
formulated as the integer program

- Z Vitqit
- Z [Cj,t(ﬁ/ V) +w; (Z Vi,t) l Uit
j

H;vAR(ﬁ, )/) = n;%x

ic9;
(22)
st. uj—qi; <0 Vie$;,Vj (23)
gir <1 Vi (24)
u;p 2 0, integer Vj. (25)

Note that the first constraint ensures that a product is
open only if all the resources it uses are open.

Now, observe that the constraint matrix of the integer
program hasexactly one +1and one -1 coefficientineach
row and, hence, is totally unimodular. So we can ignore
the integer restriction and solve (22)—(25) exactly as an
LP. In fact, problems (22)—(25) can also be solved com-
binatorially as a flow problem: the dual of the LP can be
transformed to be a network flow problem on a bipar-
tite graph with one set of nodes representing products
and the other side resources and edges representing
product-resource incidence and flow from a source
to a sink node, each connected to the product and re-
source nodes, respectively; fast algorithms of Ahuja
et al. (1994) can then be used to solve the problem
in time O(|$||E|+min(|$[%,|$|*V|E])), where |$] is the
number of resources and |E| is the number of edges in
this graph. Therefore, problems (22)—-(25) canbe solved
efficiently, and separating the wAR constraints is
tractable.

We next show that wAR can be formulated as a
compact LP eliminating the need for generating con-
straints on the fly. Because the separation problem can
be solved as an LP in which all the fixed values (8,y)
appear in the objective function only, we can fold it into
the original LP as follows: First take the dual of (22)—(25)
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with dual variables 7;;; corresponding to (23) and ¢;;
to (24):

IR (B, y) = min > iy

s.t. Z ni,j,t > -

i€y,

Gt (B, y) +w; (Z Vi,t)l

i€y;
vj
- Z Tj+ Yip = —Yip Vi
j€di
7'(1‘/]‘,1}, l,bi,t >0 Vl,] S }i.

Then use the second constraint in the LP to eliminate
the variable ¢;; to write the dual as

IT4%(6, ) =min Z[Z Tiji = Vi

i ljed

s.t. Z Tli,j,t > —

Gir(B,y) +w; (Z )/i,t)l

ic$; i€y;
Vi
(26)
D=y Vi
= 7)

UsH: >0 VZ,] € }i‘

Now we fold in the LP formulation of IT*4R(8,y) into
constraints (20) and write wAR equivalently as

VPAR — min Z B + Z Z Vi,tr}
pym 5 TR
st Br > Z Z Tjt = Vit

i |jeg
(26), (27) Vt
Vi Tje 20 Vi je $,t

Vit

The size of the LP is polynomial in the number of re-
sources and products. Hence, not only is wAR stronger
than CDLP, it is also tractable and has a compact for-
mulation. Notice that this formulation would have been
hard to derive and justify without the line of reasoning
starting from AF.

The dual of the LP gives more insight into the weak
affine relaxation. We get the dual LP as

YWAR — n}%x Z Z /\fjxj,t
’ j

-1
1 .
Xot + E E Axjs + E Xjp—pig <1; Vit
s=1 jeg; jed;

Xo,t + Z X]‘,t =1 Vt
j

(dwAR)s.t.

x4

7t ..
——=xor+pir <0 VijeF,t
Wi

Xot Xjt, Pip 20 Vi t.

If we interpret x;; as the sales rate for product j at time ¢
and xo¢ — pi; as the resource level no-purchase rate at
time ¢, then we can view wAR as a refinement of SBLP
of Gallego, Ratliff, and Shebalov (2015), in which the
sales rates at each time period are modulated by the
expected remaining resource capacities.

The weak affine relaxation is based on isolating the
difficult term in the affine relaxation and replacing it
with a simpler, more tractable term. The separation
problem involving the simpler, more tractable term
can be formulated as an LP. Taking the dual of the LP
formulation of the separation problem yields the
compact formulation of the weak affine relaxation.
One advantage of having a compact formulation is
that it eliminates the overhead associated with op-
timizing the constraint-separation code and memory
management. Another benefit is that it reduces the
subjectivity involved in setting the stopping criterion
for the constraint-separation process. It is possible to
build on these ideas and obtain other tractable ap-
proximation methods that further tighten the wAR
bound. We describe two such approximations in the
online appendix.

5. MNL with Multiple Customer Segments
In this section, we describe how to extend the weak
affine relaxation of Section 4 to the MMNL model. The
MMNL model is a rich choice model that can ap-
proximate any random utility choice model arbitrarily
closely (McFadden and Train 2000). In Section 5.1, we
consider the MMNL choice model with disjoint con-
sideration sets. In Section 5.2, we consider the case in
which the consideration sets of the different segments
overlap. It is also possible to extend the weak af-
fine relaxation idea to the general attraction model of
Gallego, Ratliff, and Shebalov (2015) in a transparent
manner.

5.1. Disjoint Consideration Sets
We consider the case in which the total demand is
comprised of demand from multiple customer seg-
ments. The consideration sets of the different segments
are disjoint, and so we have €; N 6,, = 0 for segments /
and m. We note that the case of disjoint consideration
sets for the segments is one of the few known cases in
which the CDLP formulation is tractable. We describe
how wAR can be extended to tighten the CDLP bound in
a tractable manner. The key idea is to look at the AF
separation problem for each customer segment, which
again turns out to be intractable. We apply the ideas
from the single-segment case to get a tractable relaxation.
Let $,={ie¥|Fje%andje $} and & ={l€ L]
i € $;}. We can interpret §; as the set of resources that
are used by segment / and &; as the set of segments that
use resource i. Letting A; denote the arrival rate for
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segment /, we can interpret Yy, A; as the effective
arrival rate for resource i.

Now consider the separation problem for AF. Using
AQi(S) = 2 AQi(S) and AR(S) = 5, AiR/(S)), where
S; = SN %, constraint (12) can be written as

Bt + Z Vjiess Vit + Z
i i
> >TAR(S).
I

( ZT: )’i,k) > 4QiS)

k=t+1 I l (28)

We first split this constraint into I separate constraints,
one for each segment, by introducing variables ;. The
constraint for segment [ at time ¢ is that

B+ D “[ies‘sl]?/i,t/\i' +> > LR'(S)

€9 i

( ZT] Vi,k) AQi(S)

k=t+1

(29)

for each S; =SN%;, where Al =,/ Sy, Ay can be
interpreted as the probability of a segment-/ arrival
given the arrival of a segment that uses resource i. The
proof of Proposition 4 shows that the segment level
constraints (29) imply (28) and that we obtain a looser
upper bound by separating over (29) instead of (28).

We observe that the segment level constraints (29)
have the same form as constraints (12) in the single-
segment case and are, therefore, hard to separate. So
we use the same relaxation as we did for the single-
segment case to obtain a tractable separation problem
at the segment level:

H;Z;JAR(‘B, ,y) — nt;%x — Z /\b/i,tqi,t

4 €9

-2

j€e
s.t. (23) —(25),

C},t(ﬁr y)+ w]l Z /\b/i,t

ic$;

u]',t

where

C]l‘,t(ﬁr V)= w;

B+ Az((Z > y) —ﬁ)]- (30)

i€y k=t+1

We replace constraint (29) with g, > ITV4R(B, y)
to obtain a segment-based weak affine relaxation
(swAR):

szAR = nﬁ%/n Z Z ﬁl,t + Z Z Vi,tril
4 t 1 t i

st B = ILVAR(By) VIt

Ol LA Zyl_ilsl

Moreover, by following the same steps as for the single-
segment case, it is possible to show that swAR can be
formulated as the following compact LP:

DIDIIEDIPN i
(] it

1
D T — A
jedijee

D Tijr > — ijt(ﬁ/ y)+ wfj (Z A?Vi,t)l

le\%‘ ZE.g)]'

VAR = min
VB

(swAR)st. B> >

i€y 1

Vi, t

Vit

Z Tt — /\5»’)/{1 >0 Vile gi,t
jeS i€
Vi Tijr 20 V,ij€$,t,

where ¢; denotes the segment to which product j be-
longs. swAR can be viewed as an extension of wAR to
the MNL model with multiple segments and disjoint
consideration sets. In particular, swAR coincides with
wAR if there is only a single segment. Note that swAR
is again tractable as it is a compact LP. Proposition 4
shows that it also obtains an upper bound on the value
function that is tighter than CDLP.

Proposition 4. VAF < yswAR < (CDLP

Proof. Using the MNL choice probability (1), (30), and
rearranging terms, the swAR constraint §;; > Hf‘t"AR By)
can be equivalently written as

T
Bue 2 M|RI(S) = 35 37 QS
i€$; k=t+1 (31)
= > Viess 1Vt (Z Pi(S) + Pf)(Sz))
€9y IS

1 _ A
for all S; C 6}, where A; = Zl,eg,; A

Consider now two intermediate problems:

V = min DB 2 D vt
. to £

st. (29) VLS C%,t
Vit 20 Vit
and

Vamin >33 pu+ 2] DLy
4 t I t i

st P> AR(S) - D) Z QiSvir|  (32)

€9 k=t
V1,5 C €t
Yit =0 Vit
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We can interpret the first problem as a segment-based
relaxation of AF, and the second problem can be viewed
as a segment-based relaxation of CDLP.

We next show that VAF < V < VsWAR < {/ = yCDLP
which completes the proof of the proposition.

(i) V < V=R < V. Because the objective functions of
all the problems are the same, we only need to compare
the corresponding constraints. Because ey, P} i(S1) +
Pi(S)) <1, it follows that constraint (31) 1mp]1es con-
straint (29), and we have V < Vs@4R,

On the other hand, the right-hand side of constraint (32)
can be written as

i€d; k=t+1 €9

A|R(S) -3 D] Qﬁ-(Sz)%,kl = > QiS)yi-
Now note that

MQi(S)Yir = Ailjiess 1 QS Vi

> Pis)

Lj€$:

> Pis)

Ljedi

> Pi(S) + Py(S)
Lje$:

= Mljiegy] Vit

< Ailjiess) Vit

< Al1 lieds,] Vit

where the first equality holds because, if Tjjes, ) = 0, then
QiS))=0, and the first inequality holds because
Sreg; Ar <1, and so A; < Z L
reg; M
straint (32) implies constraint (31),
szAR < V
(ii) VAT < V.Suppose that (B, ) satisfies constraints (29).
We show that it satisfies constraints (28) as well. Fix a set S
and let S; = S N €;. Adding up constraints (29) for all the
segments,

= Al Therefore, con-

and we have

> > Z{Az R(S)->, ZT] Qf(sl)f/i,kl
1 1 i€ k=t+1

- Z ﬂ[ieysl]f/i,t)\i}

ic¥;

= R(S) Dy QZ(S)%k = 2 Vi 2 Tiegg1A

i k=t+1 i le¥;
>A R(S) Z Z Qz(s)%k - Z)A/i,tz 1][1"595])\5‘
i k=t+1 i le;

T

Qi(s)f/i,k

Vit Viess)s

where the first equality uses the fact that Q!(S;) = 0 for
I ¢ &;, and hence, AQ;(S) = £, ,QN(S)) = Zieer, MQI(S)).
The second 1nequahty holds because 1][16%1 < Tiegg)-
Letting B = {B: = X1 f1;| Y1}, it follows that (3, 7) satlsfles
constraints (28). Therefore, VAF < 3 i + 3 3 Pir =
Meissner, Strauss, and Talluri (2013) prove the followmg
that we include for completeness.

(iii) V = VEPLP (Meissner, Strauss, and Talluri 2013).
Constraints (6) in dCDLP are equivalent to

R(S)- > 2 Qi(S)Vi,kl}

i

max{z A [RI(S N%;) — Z Z Qi(sn %)%kl}
€9, k=t
Z max{Al }

where the last inequality uses the fact that the consid-
eration sets are disjoint. Therefore, the A{CDLP constraint

Bt = max{

R(S)->, Z QUS)Yik

€9 k=t

is equivalent to the constraints §; = X f;;, and
Bie = max{/\z R(S)->.>] Qg(sl))/i,kl},
Si ic9, k=t

which is exactly constraint (32). O

As we show in the next section, it is possible to
extend the swAR approximation to the MNL model
with multiple segments when the consideration sets
overlap. The dual of swAR, which we give here, turns
out to be useful for this purpose.

VdswAR —max ZZZ/\J} 2

1 ]E‘@[

X0, + Z > A (33)

s=1 je$,N¢;

(dswAR)s.t. > l

le¥;

I 1 v
+ > /\,]t—/\lplt <r Vit

jeFine
Xop+ 2o x, =1 Vit
]‘6(61
X
u]ﬂ —xp + P, <0 VLije$ NGt

]
Xop Xy P20 VLijeginG,t.
(34)

5.2. Overlapping Consideration Sets

When the segment consideration sets overlap, the
CDLP formulation is difficult to solve even for MNL
with just two segments. So one would imagine that it is
difficult to find a tractable bound tighter than CDLP in
this case. One strategy, pursued in Meissner, Strauss,
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and Talluri (2013), is to formulate the problem by
segments and then add a set of consistency conditions
called product-cut (PC) equalities. These equalities ap-
ply to any general discrete-choice model and appear
to be quite powerful in numerical experiments, often
bringing the solution close to CDLP value. Strauss and
Talluri (2017) subsequently show that when the con-
sideration set structure has a certain tree structure, the
cuts, in fact, achieve the CDLP value. Talluri (2014)
shows how to specialize the PC equalities to the MNL
choice model. In this section, we describe how the PC
equalities, specialized for MNL, can be added to dswAR
to tighten the approximation.

We begin with a brief description of the PC equalities:
Meissner, Strauss, and Talluri (2013) allow different sets
to be offered to different segments. However, to ensure
consistency, they require that for any product j € €, N €,,,
the length of time it is offered to segment / must be equal to
the length of time it is offered to segment m. This leads
to a set of consistency constraints, which they term as PC
equalities. Talluri (2014) uses choice probabilities (1) to
specialize the PC equalities to the MNL model as

1
Yk
g
Wi {Sc(6inG,)ljes)

A<y VL m S C 6N G, €6\ €, (36)

Y Vlm,je € NG,  (35)

25 wydy+ (L+ Wiy =
{TS(6,06,)[T2S} | je€\ 6y

m, m,l my, M,
> W'y + (1 + Wiy,
{T7C(%,,0))|T' 28} | j€6,,\€

VI,m,S C 6 NG,
(37)

where Wé = Yjes w]l-, and we have new variables of

the form y%" defined for all pairs of segments I, n and for
all S € 6; N 6,,; see Talluri (2014). If the overlap in the
consideration sets of the different segments is not too
large, then the number of PC equalities is manageable.

Talluri (2014) shows that adding PC equalities
(35)—(37) to the SBLP of Gallego, Ratliff, and Shebalov
(2015) further tightens the SBLP bound. We are also able
to tighten the dswAR bound by doing the same thing.
Moreover, comparing dswAR with SBLP, it is easy to see
that a feasible solution to dswAR is also feasible to SBLP.
Therefore, dswAR is tighter than SBLP. It follows that
dswAR augmented with the PC equalities continues to
be tighter than SBLP with the same PC equalities. So, in
conclusion, when segment consideration sets overlap,
we also have the following:

Proposition 5. The_objective_function _uvalue of dswAR
with (35)—-(37) added is less than or equal to the objective
function value of SBLP with (35)—(37) added.

In closing, we note that dswAR augmented with the
PC equalities is not guaranteed to be tighter than CDLP.
We numerically compare the performance of dswAR
with CDLP in our computational experiments that we
present next.

6. Computational Experiments
In this section, we compare the upper bounds and the
revenues obtained by CDLP, wAR, and AF. We begin
by describing the experimental setup.

6.1. Test Network

We consider a hub-and-spoke network with a single
hub that serves N spokes. Half of the spokes have two
flights to the hub, and the remaining half have two
flights from the hub so that the total number of flights
is 2N. All the flights have identical capacities. Figure 1
shows the structure of the network with N = 8.

The total number of fare-products is 2N(N + 2).
There are 4N fare products connecting spoke-to-hub
and hub-to-spoke origin-destination pairs, of which
half are high fare-products and the remaining half are
low-fare products. The high fare-product is 50% more
expensive than the corresponding low fare-product.
The remaining 2N? fare-products connect spoke-to-
spoke origin-destination pairs. Half of the 2N? fare-
products are high fare-products and the rest are low
fare-products with the high fare-product being 50%
more expensive than the corresponding low fare-
product.

Each origin—destination pair is associated with two
customer segments. The first segment considers only
the low fare products connecting its origin—destination

Figure 1. Structure of the Airline Network with a Single
Hub and Eight Spokes
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pair, and the second segment considers the high fare-
products as well. Therefore, the consideration sets of
the different customer segments overlap. Moreover,
within each segment choice is governed by the MNL
model, and we sample the preference weights of the
fare-products in its consideration set from a Poisson
distribution with a mean of 100 and set the no-purchase
preference weight to be 0.5 X e, w} So the probability
that a customer does not purchase anything when all
the products in the consideration set are offered is one
in three.

We measure the tightness of the leg capacities using
the nominal load factor, which is defined in the fol-
lowing manner. Letting 5, = argmaxgR(S) denote the
optimal set of products offered at time period ¢ when
there is ample capacity on all flight legs, we define the
nominal load factor

2 2 AQi(S)
o=
it}

where A denotes the total arrival rate in a time period.
We set A = 0.9 and have 7 = 200 time periods in all of
our test problems. We label our test problems by (N, «),
where N € {4,6,8} and o € {0.8,1.0,1.2,1.6}.

6.2. Results

As we mentioned earlier, it is known that the gap be-
tween CDLP and affine relaxation diminishes to zero
with increasing capacities (Kunnumkal and Talluri 2016).
So it is not possible to get large problems in which the
gap between weak affine relaxation and CDLP values are
significant. Most of the benefits of wAR, therefore, are
likely to happen when the capacities are small, near the
end of the booking horizon. We validate this intuition
by performing numerical experiments on (i) the differ-
ences in the values of the various methods at small ca-
pacities, (ii) revenue simulations with small capacities,
and (iii) revenue simulations on larger real-world net-
works in which we turn on wAR-recommended controls
at the halfway point with CDLP recommendations
controlling the initial half.

7

6.2.1. Upper Bounds. Table 1 gives the upper bounds
obtained by the benchmark solution methods. The first
two columns in the table give the problem character-
istics. The third, fourth, and fifth columns, respectively,
give the upper bounds obtained by CDLP, wAR, and
AF. The last two columns give the percentage gap
between the upper bounds obtained by CDLP and wAR
and CDLP and AF, respectively. We note that by wAR,
we mean the segment-based weak affine relaxation
augmented with product-cut equalities described in
Section 5.2, and by AF, we mean the reduced formu-
lation RAE. We_solve CDLP_and AE_using column
generation and stop when they are within 1% of opti-
mality. Based on initial setup runs, this seemed to provide

Table 1. Comparison of the Upper Bounds for the Hub-and-
Spoke Test Problems with Overlapping Consideration Sets

% gap with

Upper bound CDLP

Problem  Average

(N, @) capacity CDLP wAR AF/RAF  wAR  AF/RAF
4, 0.8) 21 7,069 7,094 7,060 -0.35 0.13
4, 1.0) 16 6,309 6,266 6,241 0.69 1.08
4,12) 14 5975 5,907 5,879 1.14 1.60
4, 1.6) 11 5207 5,140 5,098 1.30 2.10
(6,0.8) 13 6,783 6,807 6,773 -0.35 0.14
(6, 1.0) 11 6,240 6,149 6,109 1.46 2.10
(6,1.2) 9 5,789 5,683 5,645 1.84 2.48
(6, 1.6) 7 4770 4,704 4,675 1.38 2.01
(8,0.8) 10 5921 5916 5,883 0.08 0.63
(8, 1.0) 8 5342 5233 5,193 2.04 2.79
8,1.2) 7 4,848 4,719 4,684 2.67 3.37
(8, 1.6) 5 4170 4,044 3,998 3.03 4.14

Average 1.24 1.88

a good balance between the quality of the solution and
the computational effort involved. Figure 2 illustrates
how the quality of the solution and the computational
time required to solve CDLP varies with the stopping
criterion for a representative test problem.

AF generates the tightest upper bound, followed by
wAR and then by CDLP. The average percentage gap
between wAR and CDLP is 1.24% although we observe
instances in which the gap is as high as 3%. In our test
problems, there is overlap in the consideration sets of
the different segments, and therefore, wAR is not guar-
anteed to be tighter than CDLP. However, we observe
that, overall, wAR tends to obtain tighter bounds than
CDLP. The percentage gap between wAR and CDLP
seems to increase with the nominal load factor and the
number of spokes in the network. AF obtains bounds that
are, on average, 1.88% tighter than CDLP. wAR closes
about 70% of the gap between the AF and CDLP bounds.

6.2.2. Revenue Results. Table 2 gives the expected
revenues obtained by the different benchmark methods.
We evaluate the revenue performance by simulation and
use common random numbers in our simulations. In our
revenue simulations, we divide the booking period into
five equal intervals. At the beginning of each interval,
we resolve the benchmark solution methods to get
fresh estimates for the marginal value of capacity on
the resources. Recall that all of the benchmark methods
give a solution of the form (B, ) with $7_, ;s being an
estimate for the marginal value of capacity on resource i
at time f. We use these marginal values to construct a value
function approximation f/t(r) =22, Pis)ri and solve
problem (8) to decide on the offer set. We continue to use
this decision rule until the beginning of the next interval in
which we resolve the benchmark solution methods.

The columns in Table 2 have a similar interpretation
as in Table 1 except that they give the expected total
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Figure 2. (Color online) CDLP Objective Function Values, Revenues, and CPU Times as a Function of the Stopping Optimality

Gap for the Hub-and-Spoke Test Problem (6, 1.0)
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Note. OPT means that CDLP is solved to optimality.

revenues. In the last two columns, we use a v to in-
dicate that the corresponding benchmark method
generates higher revenues than CDLP at the 95% level,
a O if the difference in the revenue performance of the
benchmark method and CDLP is not significant at the
95% level, and an X if the benchmark method generates
lower revenues than CDLP at the 95% level. wAR, on
average, generates revenues that are 2.17% higher than
CDLP although we observe instances in which the gap
is as high as 6%. As with the upper bounds, the revenue
boosts are more noticeable at the higher load factors. It
is interesting to note that the magnitude of the revenue
gaps is larger than that of the upper bounds. AF gen-
erates revenues that are, on average, 1.75% higher than
CDLP, and its revenue performance is comparable with
that of wAR.

6.2.3. Robustness Checks. A natural question that ari-
ses concerns the sensitivity of the upper bounds and the
revenues to the column-generation stopping criterion. To
address this, we compare the performance of the bench-
mark methods on an additional set of test problems in
which we solve CDLP to optimality. We continue to work
with the hub-and-spoke network structure except that
we now associate each origin—destination pair with a
single customer segment. Moreover, each segment is only
interested in the fare-products connecting the particular
origin—destination pair. Therefore, the consideration sets
of the different customer segments do not overlap now,
and we can solve CDLP to optimality using the compact
ives the upper
tion methods,

and Table 4 gives the expected revenues. We observe
that the nature of the results do not change significantly
even when we solve CDLP to optimality. wAR generates
tighter bounds than CDLP and closes nearly 75% of the
gap between the AF and CDLP bounds. The revenue
performance of wAR continues to be superior to that
of CDLP and is comparable with that of AF.

Figure 3 shows a representative plot of how the mar-
ginal values of capacity obtained by the benchmark
methods change over the course of the booking ho-
rizon. Recall that wAR, CDLP, and AF all yield a so-
lution of the form (,7), where Xf_ i can be
interpreted as being an estimate of the marginal value

Table 2. Comparison of the Expected Revenues for the
Hub-and-Spoke Test Problems with Overlapping Consid-
eration Sets

Expected revenue % gap with CDLP

Problem Average

(N, a) capacity CDLP wAR AF/RAF  wAR  AF/RAF
4, 0.8) 21 6,862 6,828 6835 -049x -0390
4, 1.0 16 5,827 5887 5913 1.04v 1487
4,12 14 5515 5,584 5,650 124 v 245 v
4, 1.6) 11 4592 4,774 4,750 398v 344V
(6,0.8) 13 6,337 6439 6,291 1.61v -0.73 x
(6, 1.0) 11 5799 5738 5730 -1.04x -1.19x
6,1.2) 9 5,147 5,367 5,236 426/ 1.71 v
(6, 1.6) 7 4,109 4,357 4,390 6.06 v 685V
(8,0.8) 10 5554 5591 5557 067v 0050
(8, 1.0 8 4803 4,894 4,887 190v 1747
(8, 1.2) 7 4,267 4,384 4,370 273/ 241 v
(8, 1.6) 5 3,528 3,674 3,641 413 v/ 3.19v

Average 217 1.75
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Table 3. Comparison of the Upper Bounds for the Hub-and-
Spoke Test Problems with Disjoint Consideration Sets

% gap with

Upper bound CDLP

Problem Average

(N, a) capacity CDLP  wAR  AF/RAF wAR AF/RAF
(4,0.8) 21 7,180 7176 7,155 0.06 0.35
4, 1.0) 16 6,462 6,377 6,352 1.31 1.70
(4,1.2) 14 6,138 6,053 6,027 1.38 1.81
4, 1.6) 11 5,389 5304 5277 1.57 2.08
(6,0.8) 13 6,918 6,891 6,860 0.39 0.84
(6, 1.0) 11 6,357 6,241 6,205 1.83 2.39
(6,1.2) 9 5,799 5683 5,654 2.00 2.50
(6, 1.6) 7 4,796 4,704 4,672 191 2.57
(8,0.8) 10 6,040 5992 5,959 0.79 1.33
(8, 1.0) 8 5,460 5328 5,288 243 3.15
(8,1.2) 7 4,993 4,857 4,817 2.73 3.52
(8, 1.6) 5 4,243 4129 4,089 2.70 3.63

Average 1.59 216

of resource i at time t. The marginal values of capacity
are used in (8) to obtain a control policy. CDLP yields
static marginal values, and the wAR and AF marginal
values change with time. The wAR and AF marginal
values start decreasing toward the end of the booking
horizon, reflecting the perishability of the resources.
Consequently, we expect the controls based on them
to have superior revenue performance.

As another robustness check, we compare perfor-
mance of the dynamic programming decomposition
approaches based on CDLP and wAR. Liu and van
Ryzin (2008) describe how the CDLP dual solution
can be used to decompose the network problem into
a number of single resource problems, and Zhang
and Adelman (2009) show that this approach obtains a
bound that is tighter than the CDLP bound. It is pos-
sible to apply a similar decomposition idea to wAR as
well by using the optimal dual variables associated
with constraints (33); we omit the details. Table 5 gives
the upper bounds obtained by dynamic programming
decomposition approaches based on CDLP and wAR,
referred to as DP — CDLP and DP — wAR, respectively.
The second and third columns in Table 5 give the upper
bounds obtained by DP — CDLP and DP — wAR, re-
spectively, and the last column gives the percentage
gap in the upper bounds obtained by DP — CDLP and
DP — wAR. The results are in line with the earlier ob-
servations. DP — wAR generates bounds that are, on
average, 1.24% tighter that DP — CDLP, and we ob-
serve gaps as high as 4.4%. It is also worthwhile noting
that, in many cases, the wAR bound (from Table 3) is
itself tighter than DP — CDLP.

6.2.4. Larger Real-World Networks. Finally, to under-
standghowpthegperformancegofythegsolution methods
scales with the size of the problem, we test them on a

larger flight network with a longer booking horizon. Our
larger network is based on that of a European carrier
network and has 30 flight legs that connect around 125
origin—destination pairs. There are, on average, six
fare-products that are offered between each origin—-
destination pair so that the total number of fare-products
is 752. There are, on average, two customer segments
interested in the fare-products between each origin—
destination pair, and their consideration sets overlap
so that the total number of customer segments is 402.
We set the fares and flight capacities according to the
given data and use the observed demand for a fare-
product as a proxy for its preference weight. Our base
case has a booking horizon of length 7 = 640 periods.
We vary the length of the booking horizon and pro-
portionally scale the flight-leg capacities to obtain dif-
ferent test problems. In particular, we consider 7 € {160,
320,480,640} in our computational experiments.

Table 6 shows the upper bounds and the compu-
tational times for the three solution methods for the
large flight network. The first column gives the length
of the booking horizon. The second column gives the
minimum, maximum, and average flight leg capacity
in the network. The third, fourth, and fifth columns,
respectively, give the upper bounds obtained by CDLP,
wAR, and AF. The next two columns, respectively, give
the percentage gap between the upper bounds ob-
tained by wAR and AF relative to the CDLP bound. The
last three columns, respectively, give the CPU seconds
required by CDLP, wAR, and AF. All of our compu-
tational experiments are carried out on a Xeon E5
desktop, and we use CPLEX 12.6 to solve all LPs. We
solve CDLP and AF by column generation to within 1%
of optimality and report the corresponding solution
times. We solve wAR (with product-cut equalities)
to optimality as it has a compact formulation. We see

Table 4. Comparison of the Expected Revenues for
the Hub-and-Spoke Test Problems with Disjoint
Consideration Sets

Expected revenue % gap with CDLP

Problem Average

(N, a) capacity CDLP wAR AF/RAF  wAR  AF/RAF
(4, 0.8) 21 5,755 5,748 5,744 -0130 -0190
4, 1.0 16 5263 5,242 5,305 -0.39 6 0.80 v
4,1.2) 14 5056 5,080 5,136 047 © 157 v
4, 1.6) 11 4,413 4,570 4,580 356v 378V
(6, 0.8) 13 5487 5,531 5,473 081v -0250
6, 1.0) 11 5,047 5,127 5,098 1.58 v 1.00 v
6, 1.2) 9 4,665 4,764 4,760 212/ 2.02 v/
6, 1.6) 7 3,824 4,101 4,075 723/ 6.56 vV
(8,0.8) 10 4,829 4,888 4,862 122 069 vV
(8, 1.0) 8 4,343 4,434 4,456 2.09 v 261 v
8,1.2) 7 3969 4,091 4,125 308v 393v
(8, 1.6) 5 3,384 3,579 3,570 577 / 549 v

Average 228 2.34
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Figure 3. (Color online) Marginal Values of Capacity Obtained by CDLP, wAR, and AF as a Function of Time for the Hub-and-
Spoke Test Problem with Disjoint Consideration Sets and Problem Parameters (6, 1.6)
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that the gap between the CDLP and AF upper bounds
shrinks as we have longer booking horizons and larger
flight capacities. This is in line with the result in
Kunnumkal and Talluri (2016), who show that the AF
bound is within a factor of 1 + 1/min;{r!} of CDLP, where
r} is the capacity of flight leg i. Because the wAR bound
is sandwiched between the CDLP and AF bounds, the
improvements from the wAR upper bound also tend to
be relatively small when the capacities are large. Indeed,
we see that the benefits of wAR (in terms of both the
upper bound and the computation time) are the greatest
for the test problems with a relatively smaller number
of time periods and flight-leg capacities.

Inspired by the observations in the preceding para-
graph, we test the effect on the revenue performance by
switching to wAR toward the end of the booking ho-
rizon. In particular, we consider our base case test
problem with a booking horizon of length 7 = 640
periods. For each sample path, we solve CDLP at the
start of the booking horizon and use the CDLP control
policy up to time period t = 320. At that point, we
switch to wAR and use the wAR control policy for the
remaining time periods. Table 7 shows the expected
revenue obtained by this hybrid control policy and
benchmarks it with other control policies. The first
column in Table 7 describes the control policy using
a pair in which the first element denotes the solution
method used to obtain the controls for time periods
1-320_and_the second_element _denotes the solution
method used to obtain the controls for time periods
321-640. So (CDLP, wAR) refers to the control policy

120 160 200

Time

described here. On the other hand, (CDLP, CDLP) re-
fers to a control policy that uses CDLP controls for time
periods 1-320, resolves CDLP at time t = 320, and uses
the refreshed CDLP solution to make the decisions for
the remaining time periods. We use @ to indicate that
we do not refresh the controls at the halfway point
(t = 320). So, for example, (CDLP, @) refers to a control
policy in which we solve CDLP only at the beginning of
the booking horizon. The second column gives the ex-
pected revenues obtained by the control policies, and

Table 5. Comparison of the Upper Bounds Obtained by
the Dynamic Programming Decomposition Approaches
for the Hub-and-Spoke Test Problems with Disjoint
Consideration Sets

% gap between

Upper bound DP - CDLP

Problem
(N,a) DP - CDLP DP —wAR and DP — wAR
4, 0.8) 7,146 7,158 -0.17
4, 1.0) 6,415 6,363 0.82
4, 1.2) 6,091 6,038 0.88
4, 1.6) 5,323 5,266 1.08
(6, 0.8) 6,838 6,857 -0.28
(6, 1.0) 6,306 6,225 1.28
(6,1.2) 5,750 5,667 1.43
(6, 1.6) 4,749 4,675 1.55
(8,0.8) 5,961 5,969 -0.13
(8, 1.0) 5,408 5,310 1.80
8,1.2) 4,941 4,835 215
(8, 1.6) 4,200 4,015 441

Average 1.24
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Table 6. Comparison of the Upper Bounds and Computation Times for the Large Network with 30 Flight-Legs

Upper bound % gap with CDLP CPU seconds
Problem Cap
T (minimum, maximum, average) CDLP wAR AF/RAF wAR AF/RAF CDLP wAR AF/RAF
160 3,9,5 65,530 64,305 62,536 1.87 4.57 720 129 2,727
320 (5, 17, 10) 127,844 126,979 124,863 0.68 2.33 1,566 670 4,730
480 (8, 25, 14) 188,880 188,153 185,876 0.38 1.59 2,648 1,566 5,208
640 (10, 33, 18) 249,638 249,236 246,483 0.16 1.26 2,961 3,017 7,400

the last column gives the percentage difference with
the (CDLP, @) control. We use a v to indicate that the
revenue differences are significant at the 95% level. We
observe that control policies based on wAR generate
noticeably higher revenues. As observed previously, the
revenue gaps tend to be larger than the corresponding
gaps in the upper bounds. (CDLP, wAR) provides about
a 2% revenue boost compared with (CDLP,CDLP).
Therefore, switching from CDLP to wAR at the halfway
mark (t = 320) can lead to significantly higher revenues.
An added benefit is that wAR also tends to have sig-
nificantly shorter run times when we solve it at the
halfway mark.

7. Conclusions

CDLP and the affine relaxation are two methods in the
literature that give upper bounds on the value func-
tion for choice network revenue management. Al-
though CDLP is known to be tractable for the MNL
model with disjoint consideration sets, we show that
the affine relaxation is NP-hard even for the single-
segment MNL model. Nevertheless, by analyzing the
affine relaxation, we obtain a weaker but tractable
approximation. We show that our approximation yields
an upper bound that is in between the CDLP and the
affine bounds. Our relaxation retains the appeal of the
formulation discovered in Gallego, Ratliff, and Shebalov
(2015) in that it involves solving a compact LP, elimi-
nating the need for constraint or column generation.
We extend our approximation to the mixture-of-
multinomial-logits model with disjoint as well as
with overlapping consideration sets. Our computa-
tional study indicates that our approximation typi-
cally produces upper bounds that are close to the
affine bound (achieving nearly 75% reduction of the

Table 7. Comparison of the Expected Revenues Obtained
by the Different Control Policies for the Large Network with
30 Flight-Legs and 640 Time Periods

Control policy

(1-320, 321-640) Expected revenue % gap with (CDLP, @)

gap between it and the CDLP), have good revenue
performance (obtaining, on average, above 95% of the
revenues obtained by policies from the affine relaxa-
tion), and can be a tractable alternative to solving the
affine relaxation with running times typically a fraction
of that of the reduced affine relaxation.
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